Московский экономический журнал 6/2020

УДК 658

DOI 10.24411/2413-046Х-2020-10416

К ВОПРОСУ О ПОВЫШЕНИИ ЭФФЕКТИВНОСТИ ДЕЯТЕЛЬНОСТИ АГРАРНОГО ПРОИЗВОДСТВА

ON IMPROVING THE EFFICIENCY OF AGRICULTURAL PRODUCTION

Баянова
Ольга Викторовна,
кандидат экономических наук, доцент,
доцент кафедры бухгалтерского учета и финансов ФГБОУ ВО Пермский ГАТУ, г. Пермь

Bayanova Olga Victorovna, candidate of economic Sciences, associate Professor,
associate Professor of accounting and Finance Department  FSBEI
HE Perm SATU, c. Perm

Аннотация.
В
научной статье проведено эконометрическое исследование по выявлению зависимости
показателей энерговооруженности труда в сельскохозяйственных организациях
и  производства продукции птицеводства:
представлены методика анализа и результаты исследования. Цель исследования –
представить методику анализа и выявить наличие (отсутствие) зависимости
показателей средней яйценоскости одной курицы-несушки и энерговооруженности
труда в сельскохозяйственных организациях. Метод проведения анализа – регрессионный
и корреляционный анализ (парная регрессия и корреляция), расчет ошибки
аппроксимации, выдвижение (опровержение) нулевой гипотезы, построение
доверительного интервала; область применения результатов – сельское хозяйство.
Вывод – выявлена слабая связь между экономическими показателями,
свидетельствующая о том, что рост
энерговооруженности труда не во всех случаях приводит к росту средней
яйценоскости одной курицы-несушки; слабое влияние на результативный признак
выбранного фактора подтверждает значение коэффициента детерминации,
свидетельствующее об охвате вариации фактором результативного признака всего на
13%; значение параметра а
статистически значимо, по параметру а
отвергнута нулевая гипотеза.

Summary. In the scientific article, an econometric study was carried out to identify the dependence of the indicators of energy capacity of work in agricultural organizations and the production of poultry products: the methodology of analysis and the results of the study are presented. The purpose of the study is to present the methodology of analysis and to identify the presence (absence) of dependence of indicators of average egg content of one non-carrying chicken and energy-armed labor in agricultural organizations. Analysis method — regression and correlation analysis (pair regression and correlation), calculation of approximation error, extension (refutation) of zero hypothesis, construction of confidence interval; The scope of the results is agriculture. Conclusion — the weak communication between economic indicators demonstrating that growth of installed power per employee of work not in all cases leads to growth of an average yaytsenoskost of one chicken layer is revealed; weak influence on productive sign of the chosen factor confirms the value of coefficient of determination demonstrating coverage of a variation a factor of productive sign for only 13%; the value of parameter and is significant, in parameter and the null hypothesis is rejected.

Ключевые
слова:
сельское хозяйство; энерговооруженность труда; парная
регрессия и корреляция; доверительный интервал.

Keyword: agriculture; installed power per employee of work;
pair regression and correlation; confidential interval.

Введение

Энерговооруженность
труда в птицеводстве на практике нередко выше по сравнению с другими отраслями
аграрного производства. Однако имеются и другие объективные факторы,
оказывающие существенное влияние на повышение яйценоскости куриц-несушек.
Поэтому, проведение анализа зависимости 
средней яйценоскости одной курицы-несушки от уровня энерговооруженности
труда в сельскохозяйственных организациях является актуальным.

Проблемы обеспечения
роста объемов производства продукции птицеводства являются дискуссионными среди
многих отечественных и зарубежных 
ученых-экономистов: дал оценку современного состояния аграрного сектора
в России в условиях санкций К.Г. Бондин [2]; выявили проблемы обеспечения
продовольственной безопасности в Мексике D. Magana-Lemus, A. Ishdorj, C.R. Rosson и J. Lara-Alvares  [4]; дали оценку
эффективности реализации целевых программ развития АПК региона Асриянц К.Г. и
Багавудинова К.Б. [1]; обратила внимание на приоритетные направления реализации
государственной программы развития АПК в Тюменской области Зубарева И.Ю. [3]; вскрыли
рычаги увеличения производственного потенциала АПК Сербии Savic L., Boskovic G. и Micic V. [5]; провели анализ индексов
сравнительного преимущества конкурентоспособности сельского хозяйства Вьетнама Viet Van Hoang, Khai Tien Tran и Binh Van Tu  [6]. Таким образом,
проблемы обеспечения роста производства продукции в аграрном производстве
являются актуальными в отечественной и зарубежной научной литературе.

Материалы и методы исследования

Считаем важным провести исследование с применением методов статистики зависимости показателей, которые характеризуют эффективность экономики Российской Федерации. По данным Росстата Российской Федерации к таким показателям относятся: энерговооруженность труда в сельскохозяйственных организациях (энергетические мощности в расчете на 1 работника) и средняя яйценоскость 1 курицы-несушки (таблица 1).

Вначале выявим результативный
признак и фактор:

  • средняя яйценоскость 1 курицы-несушки – результативный признак;
  • энерговооруженность труда в сельскохозяйственных организациях – фактор.

В рабочей таблице (таблица 2) произведем расчет регрессионного значения результативного признака (средняя яйценоскость 1 курицы-несушки).

На этапе верификации произведем расчет ошибки аппроксимации (таблица 3).

Расчет ошибки аппроксимации производится по формуле:

Среднее значение ошибки
аппроксимации составило 0,6 %, что свидетельствует об отличном подборе модели к
исходным данным.

Выдвигаем гипотезу H0 о статистически
незначимыхотличиях от нуля значений
показателей: a = b
= rxy
=
0.

При tтабл
=
2,57 для числа степеней свободы  df
=
n
– 2 = 7 — 2 = 5, α = 0,05
(погрешность 5%).

Определим случайную ошибку параметра ma, используя формулы:

Рабочая таблица для определения ошибки параметра ma  (таблица 4).

Определим значение среднеквадратического отклонения фактора (таблица 5).

Далее определим случайную ошибку параметра mb:

После этого определим случайную ошибку параметра mr:

Для того. чтобы определить значение числителя в формуле необходимо рассчитать коэффициент детерминации. Коэффициент детерминации равен квадрату коэффициента корреляции. Расчет коэффициента корреляции произведем по формуле:

Определим среднеквадратическое отклонение результативного признака (таблица 6).

Значение коэффициент корреляции
свидетельствует о наличии слабой связи между результативным признаком и
фактором.

Тогда коэффициент детерминации составит:

R2 = 0,130

Коэффициент детерминации показывает вариацию результативного признака, объясняемую фактором.

В завершение произведем вычисление значения t- критерия Стьюдента:

Табличное значение на 95-и
процентном уровне значимости (α = 0,05) при числе степеней свободы равное 5 (n – 2) tтабл = 2,57.

По параметру a фактическое
значениеtстатистики превышают
табличное значение. По параметруb
  и коэффициенту корреляции фактическое значениеtстатистики не превышает
табличное значение.

Результаты исследования

Определим предельную
ошибку для каждого параметра:

a = T табл · ma =
2,57 · 291,764 = 749,833;

b
=
T
табл ·
mb =
2,57 * 0,212 = 0,545.

Доверительный интервал
по параметру а:

γa  = a ± a = 291,764
± 749,833;

γa
min
 = 291,764 – 749,833 = -458,069;

γa
max
 = 291,764 + 749,833 = 1041,597.

Доверительный интервал
по параметру b:

γb 
=
b
±
b = 0,212
± 0,545;

γb min  = 0,212 – 0,545 = -0,333;

γb max  = 0,212 + 0,545 = 0,757.

Нулевая гипотеза нашла
свое подтверждение по параметру b
и
коэффициенту корреляции. Значения параметра
 
b
и
коэффициента корреляции стремятся к нулевой отметке.

Выводы

Таким образом, рост средней яйценоскости 1 курицы-несушки только  на 13 % сопряжен с ростом энерговооруженности, а на долю неучтенных в модели факторов
приходится (1 – 0,13) 87 %.

Анализ верхней и нижней
границ (γa
max  иγa min ; γb max  и γb min) доверительных
интервалов свидетельствует о том, что с вероятностью 0,95 (p = 1
– α):
значениепараметровa
и  b статистически
не значимо,  и, находясь в указанных границах, принимают
нулевые значения.

Литература

1. Асриянц К.Г.,
Багавудинова К.Б. Оценка эффективности реализации целевых программ развития АПК
региона // Региональные проблемы преобразования экономики. – 2016. — № 12. – С.
39 – 48.

2. Бондин К.Г. Аграрный
сектор в России в условиях санкций: некоторые общие и частные оценки //
Экономика сельскохозяйственных и перерабатывающих предприятий. – 2016. — № 3. –
С. 14 – 22.

3. Зубарева Ю.В.
Приоритетные направления реализации государственной программы развития АПК в
Тюменской области // Агропродовольственная политика России. – 2016. — № 11. –
С. 10 – 12.

4. Determinants of household food insecurity in Mexico / Magana-Lemus D.,
Ishdorj A., Rosson C.R., Lara-Alvares J. // Agricultural and Food Economics. –
2016. – Vol.4. – P.4 – 10.

5. Savic L. и
др. Serbian agro-industry-potentials and perspectives/
Savic L., Boskovic G., Micic V. // Economics of Agriculture. – 2016. Vol. 63, —
№ 1. – Р. 107-122.

6. Viet  Van Hoang и др. Assessing the Agricultural Competitive Advantage bu
the RTA index: A Case Study in Vietnam / Viet Van Hoand, Khai Tien Tran, Binh
Van Tu // Agris On-line Papers in Economics and Informatics. – 2017. — № 3. – Р. 15-26.

Reference

1. Asriyants K. G., K. B. Bagaudinova assessment of the effectiveness of
implementation of targeted programs of agricultural development of the region
// Regional problems of transformation of the economy. – 2016. — No. 12. – P.
39 – 48.

2. Bondin K. G. the Agricultural sector in Russia under sanctions: some
General and private assessments // Economics of agricultural and processing enterprises.
— 2016. — No. 3. — P. 14-22.

3. Zubareva Priority directions of implementing the state program of
agricultural development in Tyumen region // agricultural and food policy of
Russia. – 2016. — No. 11. – S. 10 – 12.

4. Determinants of household food insecurity in Mexico / Magana-Lemus D.,
Ishdorj A., Rosson C.R., Lara-Alvares J. // Agricultural and Food Economics. –
2016. – Vol.4. – P.4 – 10.

5. Savic L. и
др. Serbian agro-industry-potentials and perspectives/
Savic L., Boskovic G., Micic V. // Economics of Agriculture. – 2016. Vol. 63, —
№ 1. – Р. 107-122.

6. Viet  Van Hoang и др. Assessing the Agricultural Competitive Advantage bu
the RTA index: A Case Study in Vietnam / Viet Van Hoand, Khai Tien Tran, Binh
Van Tu // Agris On-line Papers in Economics and Informatics. – 2017. — № 3. – Р. 15-26.